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ABSTRACT 

We describe a new extensible software system to 
perform molecular simulations of energetic materials.  A 
new approach for extensible software development based 
on an XML description of a program structure and a set of 
components stored in shared object libraries is described 
first.  A specific example of molecular dynamics 
simulations for energetic materials is given next and this 
is finally expanded with the capability to perform 
molecular packing calculations to show the extensibility 
and applicability of the system. 

1. INTRODUCTION 

Advanced Energetic Materials (AEM) represents a 
technology area of enormous importance to the DOD. 
AEM are required to enable high priority military 
missions ranging from Hard and Deeply Buried Target 
Defeat, to Advanced Propulsion, to lightened highly 
mobile force evolution and the thrust towards 
miniaturized munitions and systems. It is recognized that 
weapons superiority is dependent on the development of 
AEM.  Unfortunately, the current national AEM 
investment is sub-critical. It is the consensus of the US 
technology community that energetics technology is an 
area where we have been surprised by foreign 
achievements in the past and, given the vastly larger 
investment in these key technologies by foreign nations, 
are highly vulnerable in the field in the future. Overseen 
by the Office of the Under Secretary of Defense (Science 
and Technology) and the Office of Munitions, the 
National Advanced Energetics Initiative (NAEI) has been 
charted.   The NAEI recognizes that developments in 
computational chemistry and physics-based modeling 
using High-Performance Computing, chemical synthesis 
and formulation, and materials science are providing the 
key factors that will provide breakthroughs in the 
performance of energetic materials.  The DOD HPC 
network and advanced modeling science and technologies 
afford a critical means to rapidly close the technology gap 
and expedite the design and development of new 
revolutionary AEM.   

Our contribution to the design and development of 
AEM has been to establish a computational framework 
that will allow easy integration of evolving software 
required to support the modeling needs of the Army, with 

rapid turnaround.  The paper describes a generative 
programming approach [1] to produce a suite of efficient, 
user-friendly, highly scalable molecular simulation codes 
to study reactive and non-reactive processes in energetic 
materials.  The core of this approach is a simulation 
generator that assembles and runs simulations described 
in eXtensible Markup Language (XML) from a set of 
components in shared object libraries.  The complete set 
of standard molecular simulation components can be 
combined in any fashion creating typical simulations and 
providing unanticipated functionality.  This flexible 
software can be extended without modifying or 
recompiling the existing code by adding shared object 
libraries with the new desired functionality.  This 
extensibility allows the code to adapt to the changing 
needs within the Army while providing the world class 
computational performance needed for energetic materials 
research, creating a focal point for the integration of 
emerging science and high performance computing.   

The first software suite integrated into this package, 
which was supported by the DOD High Performance 
Computing Modernization Program CHSSI project CCM-
5, allows multi-million atom molecular dynamics 
simulations in a variety of thermodynamic ensembles, 
including the recently developed uniaxial Hugoniostat 
method [2].   

The next extension of the package is the integration 
of “ab initio crystal prediction” software, supported under 
CHSSI MBD-4.    This procedure predicts the crystal 
structure and density of a solid using only the molecular 
structure of a single molecule.  This predictive capability 
is considered crucial to the design and development 
process of AEM, since one of the fundamental properties 
required for the initial screening of a candidate energetic 
material is its crystalline density.  This density provides 
estimates of idealized performance in a gun and its 
detonation velocity and pressure. Integration of this 
computational capability into this extensible framework 
will result in the capability to predict properties associated 
with performance of an energetic material within a time 
span of days, making it a critical screening tool for 
candidate materials.   The traditional descriptions of the 
inter-atomic forces in this method are empirical in nature, 
thus limiting the predictive capability.  To overcome this 
obstacle, we are developing an interface to incorporate 
solid-state quantum mechanical software packages, 
specifically DOD Planewave [3] (supported through 
CHSSI CCM-1).    An added benefit to this approach is 
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that the integration of the quantum mechanical 
descriptions of forces within DOD Planewave can be 
easily extended to use in the existing molecular dynamics 
component of the package. 

2. THE SOFTWARE PARADIGM AND 
ENVIRONMENT 

The overall goal of this project is to develop a suite 
of efficient, easy-to-use, extendible, portable and scalable 
molecular simulation tools for simulations of materials of 
critical DoD interest.  To create an easy to use and 
extensible environment, this suite of software, entitled 
VisualXMD, relies on graphical user interfaces, and a 
standards based execution environment to require only a 
minimal knowledge of the details of the underlying 
software. At the same time the execution environment is 
rich enough to allow the expert to create unique advanced 
simulations. 

The execution environment consists of three parts.  
The first is the language for the description of the 
simulations called VisualML.  This language is used to 
specify the order and hierarchy of the functional 
components of the simulation.  It can be used to specify a 
list of functional components to call in order as well as 
specify what functional components are called by other 
functional components.  The second part is the graphical 
user interface that allows the user to visually create the 
VisualML describing a specific simulation.  The final part 
of the execution environment is a program that reads in 
the VisualML describing a simulation and calls the 
functional components in the proper sequence.  This 
“Code Executive” also provides an interface to any 
simulation parameters contained in the VisualML.   

2.1. VisualML 

VisualML is a simple procedure-based program 
structure language that follows the rules of XML and is an 
XML.  It does not include any molecular simulation 
specific statements and is a general-purpose language to 
describe program structure; therefore it can be reused in 
any other visual system requiring a program structure 
language.  It contains a minimal set of constructs for 
describing a simulation’s construction.  These include 
three construct: the function list, the function, and the 
parameter.  The function list construct is a list of 
functional components to be executed in sequential order.  
The function construct corresponds to a functional 
component; it must be defined in a VisualML library 
description described below.  Functions can contain other 
functions as sub-functions.  Sub-functions correspond to 
functional components executed from within the function 
corresponding to the parent function statement.  Sub-
functions are listed in the order in which the parent 
function references them with in the actual source code.  

The number of sub-functions must correspond to that in 
the VisualML library description.  Each function may 
have a zero or more parameter statements.  The parameter 
statement has a named attribute ‘type’ given in the 
VisualML library description corresponding to a data 
type.  The parameter statement also has a named attribute 
‘name’.  The name is the name of the specific 
instantiation of the data type and is used by the source to 
request the value from the Code Executive.  The order 
and of parameters and their data types must correspond to 
that in the VisualML library description for a statement. 

In addition the VisualML can be used to describe the 
functional components contained in a shared object 
library.  The library description is used to translate the 
VisualML calls into the entry points into the shared object 
library entry points.  In addition it contains specific 
functional component information such as the simulation 
parameters that needs to be specified, and the number and 
type of functional components that can be called by the 
specified functional component.  This description may be 
replaced or expanded to correspond to any update or new 
functionality with modifying any other tools or functional 
components.  This provides maximum extensibility and 
reusability.  With a modified description the Code 
Executive will be able to use additional modules in new 
or added to existing shared object libraries, whatever they 
may be.   

2.2. The Code Executive 

The Code Executive will read in a VisualML 
simulation description file and convert it into a parse tree.  
The Code Executive executes the functional components 
in the statement list at the top of the parse tree.  The parse 
sub-tree below that function is passed to the functional 
component.  The module may call the Code Executive 
and pass it the parse sub-tree and the number of the sub-
function to execute (This is the method for executing sub-
statements, or calling user definable functional 
components from with in a functional component).   The 
parse tree contains a parameter list for each function with 
pointers to the memory of the corresponding instantiation 
data type to be passed to the modules.  The interpreter 
maintains an array of pointers to point to each 
instantiation of each data type.  It is these pointers that are 
pointed to in the parameter list of the parse tree.  All 
modules must check to see that the data types that they 
are using have been allocated.  The Code Executive is 
also reusable in that it is independent on a specific set of 
modules.   

2.3. The Visual Simulator Development Environment 

The Visual Simulator Development Environment 
(VSDE) uses the library description, so it can be used to 
visually build a simulation out of whatever modules are in 
the various library descriptions.  The VSDE is a graphical 



editor for VisualML files.  It does not have to be running 
on the same platform as the Code Executive.  The VSDE 
has two interfaces, the novice interface and the advanced 
interface.  The novice VSDE displays the basic structure 
of a program and shows the modules that the novice user 
may change.  At a specific changeable module, the GUI 
will give the user the opportunity to select, from several 
preset modules, the module that will be used at that point 
in the simulation.  The advanced VSDE has a set of 
menus containing all the functional components in the 
library descriptions.  The main window contains the 
simulator window in which the functional components are 
displayed in their hierarchical order.  A right click on the 
function will display the parameters with their names, and 
any data values that can be requested by the functional 
components.  The VSDE will get the information about 
parameters and data from the library descriptions.  

3. THE MOLECULAR DYNAMICS FUNCTIONAL 
COMPONENTS 

All module components will be constructed to meet 
the standards enforced by the parser and interpreter.  The 
modules can then be reused in any VisualML simulator, 
not just VisualXMD.  Generic modules such as program 
control, domain decomposition, integrators, and 
visualization tools can be used in construction of a variety 
of Visual languages.  The modules may need modification 
in order that they can be used with a system that is not 
based on VisualML.  

VisualXMD will be based on a library of routines 
developed under CHSSI project:  CCM-4.  These libraries 
will provide the parallelization and domain decomposition 
for multiple dimensions.  This library consists of 
approximately 8,000 lines of code.  VisualXMD will also 
leverage the utility of Interdisciplinary Computing 
Environment (ICE, formerly DICE), which is being 
developed under several CHSSI programs. 

The software suite, using a variety of potentials from 
the simple to the chemically realistic, will provide a broad 
range of capabilities and execution options that will 
enable the effective and easy use of the tools by both the 
novice and advanced researcher in molecular simulations.  
and thoroughly tested modules 

3.1. Functional Components 

Functional Components need to have a C interface to 
handle the casting of pointers from the parse tree to the 
call parameter list.  The scientific modules will be written 
in FORTRAN 90 and the C interface and the library 
description entries will be created and used for all of the 
FORTRAN 90 modules.  Now we will discuss the 
different classes of modules to be implemented. 

3.1.1. Control Components 

There are only two types of control modules planned: 
the conditional module and the loop module.  The 
conditional module will have two sub-statements.  The 
first sub-statement will be executed if the specified 
conditions are met, otherwise, the second will be 
executed.  Loop modules will have only one sub-
statement, which can be a statement list.  The loop 
modules will iterate until the specified conditions are met. 

3.1.2. Atom and Bulk Property Control Components 

These modules will control specific properties of the 
simulation.  The bulk properties control modules will 
control boundary conditions and simulation constants.  
There will be a module that will handle a variety of 
boundary conditions, based on the previous work on cell-
linked lists in CCM-4. These modules will be included in 
the domain decomposition modules for ease of use. 

3.1.3. Integrator Components 

The integrator components will all integrate the 
equations of motion, but they will have different orders 
and some different properties.  The Integrator modules 
will include, at a minimum, a velocity Verlet integrator 
and a higher-order integrator, such as an N order Adams-
Moulton Predictor-Corrector or Runge-Kutta 4th Order 
integrator.  Recently a component for a uniaxial 
hugoniostat was developed.  This method utilizes 
modified equations of motion that constrain the system to 
states that correspond to points on the shock Hugoniot 
curve.  Figure 1 provides a comparison of the shock 
Hugoniot of a system evaluated using the Hugoniostat 
method with that obtained from brute force non-
equilibrium molecular dynamics (NEMD) simulations of 
a shocked system of Lennard-Jones particles.   The 
NEMD simulations require extensive computational 
resources (cycles, processors and memory) in order to 
accommodate the system size of the simulation; the 
Hugoniostat method requires only a fraction of the 
computational resources as the NEMD simulations 

3.1.4. Domain Decomposition and Communication 
Components 

The domain decomposition components divide the 
system up into cells and assign the cells to processors.  
There is a uniform cell size domain decomposition 
module.  The cell decomposer will divide the system up 
into multiple cells corresponding to a modified cell 
linked-list described in W. Mattson and B. M. Rice, 
Computer Physics Communications 119,135 (1999).  The 
domain decomposition component will create or modify a 
communication structure for use by the communication 
modules.   



3.1.5. Potential Components 

Several simple pair-additive and many-body 
interaction potentials, including the Lennard-Jones, the 
exponential-six, and the reactive Empirical Bond Order 
(REBO) potentials for model energetic materials have 
been implemented.   

3.1.6. Property Monitoring Components 

These components calculate specific properties of the 
simulation or atoms, such as Kinetic Energy, Potential 
Energy, Total Energy, Pressure, Temperature, Volume, 
and Density.  

3.2. Crystal Builder 

The crystal builder consists of separate program that 
generates Cartesian coordinates of a crystalline lattice 
using user-specific space-group symmetries and fractional 
coordinates of a molecule.  The crystal builder has a 
graphical user interface.  

4. MOLECULAR PACKING 

There are three main software components within the 
scope of this project.  Two are extensions from earlier 
CHSSI CCM projects (DoD Planewave [CCM-1] and 
VXMD [CCM-5]).  The source code for the third 
package, known as MOLPAK/WMIN, is a mix of non-
ANSI-standard Fortran 66 and Fortran 77 and currently 
exists only in a serial version.  Also, current versions of 
MOLPAK/WMIN are not portable across computational 
platforms.   

The MOLPAK (MOLecular PAcKing) computer 
program was designed to predict possible crystal 
structures for small organic compounds.  The basic 
assumption is that of closest packing and MOLPAK 
creates unit cells that have the smallest volumes per 
molecule.  One can think about a crystal structure in terms 
of a central molecule surrounded by a coordination sphere 
of other molecules related to the center by 
crystallographic symmetry (space group) and the 
dimensions of the unit cell. Currently, 29 coordination 
geometries are used for a typical structure search and 
code has been written for a total of 60 geometries.  For 
each of the coordination geometries, MOLPAK generates 
from 7000-51000 hypothetical crystal structures from the 
coordinates of a single molecule.   The 25-500 most-dense 
initial crystal structures then are subjected to lattice 
energy minimization that optimizes the crystal unit cell 
parameters and orientation and position of the molecule 
within the unit cell.  The energy minimization is space-
group symmetry restricted and performed with the 
computer code WMIN, which models molecules and 
crystals in terms of potential energy functions.  The 
refined structures are ranked according to energy with the 

lowest energy structure taken as the best.  In some cases, 
a combination of density and energy are used to select the 
best structure and a procedure that involves 
intermolecular contacts is under development.     
MOLPAK has been under development for approximately 
fifteen years under the direction of Professor H. L. 
Ammon, University of Maryland, and is currently 
maintained by Professor Ammon.  WMIN was written by 
William R. Busing of Oak Ridge National Laboratory, 
and published in 1981. To our knowledge, WMIN has not 
been enhanced nor maintained by the Oak Ridge National 
Laboratory.    

DoD Planewave has its roots in a simple planewave 
pseudopotential program written in 1992 at NRL to test 
new ideas about the transformation of pseudopotentials 
between different representations [Singh, et al. 1992; 
Singh et al. 1993]. The code was extended and 
generalized at NRL to test non-local density functionals 
during the two years [Singh, 1993]. This was in support of 
a Navy interest in ferroelectric perovskite materials for 
SONAR applications. Parallelization of the code, and 
extensions to make it general in terms of symmetry and 
chemical composition as well as to add forces and 
dynamics were started in 1996 with support from the 
CHSSI program. DoD Planewave was the main 
component of the CCM-1 (the other was ACRES). The 
parallelization, generalization and documentation of DoD 
Planewave was done between 1996 and 2000. 

The software will allow ab initio crystal prediction 
with quantum mechanical descriptions of forces to obtain 
reliable densities and structures of materials of interest to 
the DoD, including energetic materials.  This software is 
an important tool needed to unlock the fundamentals 
required to relate crystal structure at the lattice level to 
onset of initiation.  This is of high importance to DoD in 
light of the increasingly complex and harsh environments 
in which energetic materials will have to perform in 
current and future systems. 

The crystal prediction software has two levels of 
parallelism.  The first and higher level addresses the most 
computationally intensive portion of the problem:  The 
adequate sampling of orientation space through the 
generation of crystals based on the orientation of a single 
molecule.  This level of parallelism is a simple replication 
method where each processor group evaluates a single 
configuration at a time.  In the simple replication method, 
each processor group communicates with the other 
processor groups to adaptively partition the remaining 
configurations, and to report the results of finished 
configuration calculations.  Initially, when there are many 
configurations remaining to be evaluated, processor 
groups will usually consist of a single processor and 
adaptively merge into groups of multiple processors when 
there are more processors than remaining configurations.  
The replication method itself is simple to implement, but 



the adaptive nature of both the partition of remaining 
configurations and the processor groups increases the 
HPC complexity for implementation.  The second and 
lower lever of parallelism is the decomposition of the 
molecular mechanics for a single configuration across 
multiple processors.  The classical potential and 
molecular mechanics/energy minimization steps of 
MOLPAK/ROTPAK and WMIN will be parallelized by 
domain decomposition within the VXMD framework 
(CHSSI CCM-5), increasing the capabilities of both 
VXMD and MOLPAK by making available all 
permutations of there current capabilities to users.  
Parallelization will be accomplished through explicit 
standard message passing interfaces to MPI.     DoD 
Planewave is already parallelized over energy bands for a 
single configuration but must be interfaced with 
MOLPAK through VXMD to run simultaneous multiple 
configurations. 

5. CONCLUSIONS 

The VisualML framework provides a simple 
mechanism for assembling new and complex simulations 
from standard components.  The system is capable of a 
wide variety of efficient and highly scalable simulations 
necessary for energetics materials research using the 
components developed under the CHSSI program.  It is 
also easily adaptable to new the technologies being 
developed for more accurate and complete calculations of 
the properties of energetic materials. 
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